
Lecture 11

We have shown that

Case ∆u≥0︷ ︸︸ ︷
Harmonic (C2)

poison1820−−−−−−−→
Koebe1906←−−−−−−−

u(y)≤
∫
Br(y)

u︷ ︸︸ ︷
Mean V alue Property (C)

Riemann1851−−−−−−−−−→
supΩ≤sup∂Ω︷ ︸︸ ︷

Max Property

Lemma 1. Let u ∈ C0(Ω) satisfy the Mean Value Property. Then, u ∈ C1(Ω) and for any η ∈ Sn−1,
∂ηu satisfies the Mean Value Property.

Proof. Let y ∈ Ω centred in a ball Br. We wish first to assert that u ∈ C1(Ω) hence we consider
trajectory y+ ηt, η chosen from Sn−1. We have a similar ball Br(y+ ηt), so for a positive sufficiently
smallt, we have a perturbation the position of the sphere. By MVP assumption on u we have

u(y + ηt)− u(y) =
1

|Br|

∫
Br

[u(x+ ηt)− u(x)]dx

in particular,

u(y + ηt)− u(y) =
1

|Br|

∫
Br(y+ηt)

u(x+ ηt)dx− 1

|Br|

∫
Br(y)

u(x)dx.

Note that by this integration the intersections of the balls of Br(y) and Br(y + ηt), which we denote
by V , will vanish under the integral, hence we so we consider B+

r = Br(y+ηt)/V and B−r = Br(y)/V .
We have

u(y + ηt)− u(y) =
1

|Br|

∫
B+
r

u(x+ ηt)dx− 1

|Br|

∫
B−r

u(x)dx

Let ν be unit normal to the ball and let ϕ the angle between the trajectory path y + ηt and the
outward direction ν to the surface of Br. The integration measure dx will be mo

=
1

|Br|

∫
∂B+

r (y)

∫ t

0

u(x+ ηs) cosϕ︸ ︷︷ ︸
η·ν

dn−1xds− 1

|Br|

∫
∂B−r (y)

∫ t

0

u(x+ ηs)(− cosϕ) dn−1xds

1

|Br|

∫
∂Br(y)

∫ t

0

u(x+ ηs)︸ ︷︷ ︸
u(x)+ψ(x,s)

η · ν dn−1xds

|ψ(x, s)| → 0 uniformly in x as s→ 0

(this means it converges without any dependence on x)

=
t

|Br|

∫
∂Br(y)

u(x)η · νdn−1x+ o(t)

=⇒ ∂ηu(y) =
1

|Br|

∫
∂Br(y)

F−field︷︸︸︷
uη ·ν =

1

|Br|

∫
Br(y)

∂ηu

where we used the divergence theorem since

∂1(uη1) + ...+ ∂n(uηn) = η1∂1u+ ...+ ηn∂nu = ∂ηu

hence ∂ηu ∈ C0(Ω).
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Corollary 1. Let u ∈ C0(Ω) satisfy Mean Value Property. Then u ∈ C∞(Ω) and ∆u = 0 in Ω.

Proof.

∆u(y) =
1

|Br

∫
Br(y)

~5 · ~5u =
1

|Br|

∫
∂Br(y)

∂νu

u(y) =
1

|Sn−1|rn−1

∫
Sn−1

u(y + rξ)dn−1ξ rn−1

Note that the we are integrating from one sphere to another about the same centre infinitesimally
(direction of ν) so by the mean property they would vanish but we need to show this holds formally:

0 =

∫
Sn−1

∂u(y + rξ)

∂r
dn−1ξ =⇒

∫
∂Br(y)

∂νu = 0

Derivative Estimates

Let ∆u = 0.

|∂ηu(y) ≤ 1

|Br|
max
∂Br(y)

|u||Sn−1|rn−1

Note that |Br| = Sn−1

n rn−1 so

=
n

r
max
∂Br(y)

|u|.

For u ≥ 0 :

|∂ηu(y) =≤ 1

|Br|

∫
∂Br(y)︸ ︷︷ ︸
|∂Br|u(y)

u =
n

r
u(y).

Corollary 2 (Liouville’s Theorem). u harmonic in Rn, that is bounded below or bounded above implies
u ≡ constant.

Proof. Let u ≥ a and u ≤ b. u− a ≥ 0 and b− u ≥ 0 with u ≥ 0.

∂ηu(y) ≤ n

r
u(y), ∀r > 0.

=⇒ ∂ηu ≡ 0 =⇒ u ≡ constant.

Corollary 3. u harmonic in Ω, Br(y) ⊂ Ω. Then

|∂αu(y)| ≤ |α|!
(ne
r

)|α|
max
Br(y)

|u|

In particular, u ∈ Cω(Ω).
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Proof. Take a sphere with radius r. We take a smaller sphere within the same center with radius ρ.
we approximate derivatives near by (ρ away from y) by the derivatives estimates above, by reducing
order till we reach the value of the function bound at r. We reduce order of derivative to |β| = |α|−1.

|∂αu(y)| ≤ n

ρ
max
∂Br(y)

|∂βu|

ρ =
r

|α|
≤ .. ≤

(
n

ρ

)|α|
max
Br(y)

|u|.

(
n

ρ
)|α| = (n/r)|α||α||α|.

using a trick ex = 1 + x + ... + xk/k! so we pick kk/k! < ek. Analyticity comes from u(y + h) =∑
|α|≥0

∂αu(y)
|α|! hα so we need to show the following to get convergence in the series

∑(ne
r

)|α|
ρ|α| < 0

. choose ρ sufficiently small.
u harmonic in Ω, Br(y) ⊂ Ω. Then

|∂αu(y)| ≤ |α|!
(ne
r

)|α|
max
Br(y)

|u| Br(y) ⊂ Ω

v(t) =

m∑
k=0

tk/k! · v(k)(0) +
v(m+1)(ξ)

(m+ 1)!
tm+1 ξ ∈ (0, t)

Take v ∈ Cm+1(a, b), 0, t ∈ (a, l) e.g

v(t) = et, Rm = eξ

(m+1)! t
m+1 ≤ et t

m+1

m+1 → 0 as n→∞ in the case e1/x we have Rm ≈ e−1/ξ

(m+1)! (
x
ξ )m+1

depends on

Suppose
u ∈ C∞(Rn) v(t) = u(xt). x ∈ Rn t ∈ R.

v′(t) = ∂j(xt)xj v′′(t) = ∂j∂iu(xt)xjxi.

...

v(k)(0) =

n∑
j1=1

...

n∑
jk=1

∂j1...∂jku(0)xj1...xjk

=
∑
|α|=k

|α|!
α1!...αn!︸ ︷︷ ︸

α!

∂α1
1 ...∂αnn u(0)︸ ︷︷ ︸

∂αu(0)

xα1
1 ...xαnn︸ ︷︷ ︸
xα

hence for t = 1

u(x) =
∑
|α|≤m

∂αu(0)

α!
xα +

∑
|α|=m+1

∂αu(xξ)

α!
xαξ|α|
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u(x) =
∑
|α|≤m

∂αu(z)

α!
(x− z)α +

∑
|α|=m+1

(y − z)α

α!
∂αu(y − z)∂αu(y)

︸ ︷︷ ︸
Rm

y = ξ(x− z) + z

BR(z) ⊂ Ω and noting that |α|! ≤ α!n|α|,

|∂αu(y)| ≤ α!n|α|(ne/r)|α| max
BR(z)

|u|

Rm ≤ (m+ 1)ρ|α|n|α|(ne/r)|α|M = M(m+ 1)(n2eρ/r)|α|→m+1

n2eρ < r = R− ρ =⇒ ρ < R/(1 + n2e) (ball within ball radius R and rho) radius of analycity draw
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